

Peatlands

in the EU Regulatory Environment with a Case Study from the Member States

Jan Peters

Peatlands & Climate Change
Michael Succow Foundation

Workshop
Keskkonnaministeerium
Tallinn, Estonia
25th February 2016

Funded by:

Moritz von Unger

Environmental law expert

Silvestrum

Welcome at the GMC!

Who are we?

- We are the science-policy interface for all peatland related questions – locally and globally
- We offer science-based solutions for social challenges
- We are 50 peatland experts of various disciplines
- We are based in Greifswald with more than 200 years of interdisciplinary landscape-oriented research and education
- We are 3 strong partners:

Welcome at the GMC!

What do we want?

- Climate protection: Reduction of greenhouse gas emissions from peatlands and ecosystem-based adaptation
- Biodiversity: Conservation and restoration of peatlands worldwide
- Sustainable use: Paludiculture and innovative financing such as carbon credit

Why do we work on peatlands?

Climate:

- Peatlands cover only 3% of world's land surface but store twice as much carbon than all forests of the planet
- 0,3% drained peatlands are responsible for ca. 5% of anthropogenic GHG emissions

Biodiversity Ecosystem services

Hotspots of emissions from drained peatlands

Emissions from drained peatlands in Nordic Baltic Countries

	a. Total peatland area	b. Drained peatland area		c. Total CO ₂ emissions without LULUCF	d. Total peatland CO ₂ emissions	
	km²	km²	% b of a	Mt CO ₂ yr ⁻¹	Mt CO ₂ yr ⁻¹	% d of c
Estonia	9,150	6,619	72.3	17.08	8,04	47,1
Latvia	11,143 ¹⁾	7,978 ¹⁾	71.6	7.43	13.53	182.0
Lithuania	6,460	4,679	72.4	14.84	7.70	51.9
Finland	83,198	64,931 ¹⁾	78.0	50.70	20.68	40.8
Sweden	85,023 ¹⁾	15,458 ¹⁾	18.2	45.71	10.58	23.1
Norway	46,211 ¹⁾	4,348 ¹⁾	9.4	52.70	6.26	11.9
Iceland	5,777 ¹⁾	3,665 ¹⁾	63.4	3.32	7.66	230.4
Denmark	2,029 ¹⁾	1,892 ¹⁾	93.2	38.03	3.34	8.8
Greenland	75 ¹⁾	3 ¹⁾	4.0	0.60	0.00	0.3
Total	249,066	109,573	44.0	230.42	77.79	33.8

Source: Joosten et al. 2015: Peatlands and Climate in a Ramsar context – A Nordic-Baltic perspective

Emission factors based on IPCC 2014 for the Temperate climate/vegetation zone

Estonia reported only 0.83 Mt CO_2 yr⁻¹ emissions related to organic soils to UNFCCC (NIS Estonia 2014) \rightarrow Peatland emissions largely underestimated!

Objectives of the project

- Track influence of EU regulatory in exemplary regions:
 - Poland: Fens, protected, agriculture (1st part)
 - Estonia: Bogs, protected, forestry, peat extraction (2nd part)
 - Compare to other regions in EU
- Analyse land use changes on peatlands after joining EU in 2004
- Involve relevant stakeholders in the case study to
 - Analysis how EU policy framework influences and incentivizes decision making on regional/local level with focus on peatlands
 - Draw conclusions on lessons learnt in EU context, discuss in a workshop in Brussels and present policy recommendations (2nd part)

Activities of the project

- General study of the EU-law situation (and implementation in national legislation):
 - Common Agricultural Policy (CAP), especially cross compliance and agroenvironmental (climate) schemes
 - EU-forestry policy and national forest legislation
 - European Agricultural Funds of Rural Development (EAFRD)
 - Programs for transport and infrastructure
 - Environmental and Nature Conservation schemes (EU biodiversity strategy, Natura 2000, FFH, Life+, water framework directive)
 - Climate protection and adaptation policies (UNFCCC, Kyoto accounting, EU climate policies)
 - Support of fuels made of biomass, renewable energies

Activities of the project

- General study of the EU-law situation
- Case Study Poland: Fen-rich region (Lublin)
- Case Study **Estonia**: Identify bog-rich region to show effects of EU regulatory on the ground → **Pärnu**
 - Use historic (before 2004) and recent data to analyse land use changes: ,
 peatland inventory, land cadaster, EU habitat mapping, existing GIS...
 - Interview relevant stakeholders (different levels of government and administration, land users, farmer, foresters, conservationists, scientists)
 - Analysis how EU policy framework influences and incentivizes decision making on regional/local level with focus on peatlands
 - Involve experts from partner countries and Germany to draw conclusions on lessons learnt in EU context
- Publication of both studies in journals in Estonian, Polish and English

KESKKONNAMINISTEERIUM

Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

Umwelt **1** Bundesamt

AAP
Advisory Assistance
Programme

